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Summary of findings

Impacts on crop suitability in the NSW and ACT Alpine region

1.

This study investigated the impacts of climate change on four crops (wheat, barley,
canola and lupin) across the Murray—Riverina cropping (MRC) region.

Results suggest that bias correction of simulated temperature and rainfall effectively
removed biases in the climate models at an annual time scale; however, it did not
remove biases at finer temporal scales such as the cropping season.

Results suggest that mean crop yield will slightly increase in the near future (2020 to
2039) and substantially increase in the far future (2060 to 2079) when compared to
a baseline period (1990 to 2009).

The ensemble mean yield of 12 Global Climate Model/Regional Climate Model
simulations for the four crops across the MRC region is projected to increase by
2—-9% and 8-20% for the 2020 to 2039 and 2060 to 2079 periods, respectively,
relative to 1990 to 2009.

The biases in climate variables could explain 72—76% of the variance in the crop
yield biases and 80—87% of the variance in the crop phenological biases.

Small changes in seasonal radiation are projected for the near and far future
periods. The ensemble means for projected change in growing season radiation
were —0.13% in 2020 to 2039 and +0.22% in 2060 to 2079, relative to 1990 to 2009.

Strong seasonal warming trends are projected for the near and far future periods.
Maximum temperature for the growing season was projected to moderately
increase, 0.5°C in 2020 to 2039 and 1.7°C in 2060 to 2079, relative to 1990 to 2009.

Vii



Climate change impacts in the NSW and ACT Alpine region: Impacts on crop suitability

1. Introduction

1.1 Background

The New South Wales (NSW) and Australian Capital Territory (ACT) Alpine region is located
in the south-eastern corner of mainland Australia and is the highest mountain range in
Australia. Though it comprises only about 0.16% of Australia in size, it is an important region
for ecosystems, biodiversity, energy generation and winter tourism. It forms the southern end
of the Great Dividing Range, covering a total area of 1.64 million hectares that extend over
500 kilometres. The highest peak, Mount Kosciuszko, rises to an altitude of 2228 metres.

This report is part of a larger project delivered by the NSW Department of Planning, Industry
and Environment (DPIE) on the various impacts from climate change on the NSW and ACT
Alpine region, hereafter referred to as the Alpine region. The full study region covers the
Murray-Murrumbidgee region (MM), South East and Tablelands (SET) and the ACT,
bordering the Victorian border in the south (Figure 1).

Within this study region, we analysed the Murray—Riverina cropping (MRC) region, which is
located in southern New South Wales (Figure 2) and covers an area of 125,551 km? or 16%
of the state, and around 35% of the NSW cropping area (Liu et al. 2014). There are 370
SILO (Scientific Information for Land Owners climate database) Patched Point Data (PPD)
sites, which are relatively evenly distributed in the region (Figure 2). The region is
characterised by a semi-arid climate with an average daily radiation of 18.0 megajoules per
square metre, average annual minimum temperature of 9.3°C, maximum temperature of
22°C and annual rainfall of 495 millimetres over the entire region, with the 10th percentile of
site rainfall being 312 millimetres and the 90th percentile being 677 millimetres.

Study Area for
Alpine Project

{_g_f{erL’?__ New South Wales q
Z:f
] \\
/\j GRIFFITH

WAGGA
Muray WAGGA
Murrumbidgee .

(MM)

ZZ ACT and NSW

ALPs region
| Study Area

\\f\/\“%—vw ALBURY =

State boundary

Victoria s
0 3 60 90 120 150
I e O

Kilomelres

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

.....

Figure 1 The study area for the Alpine project, including the NSW and ACT Alpine
region, Murray-Murrumbidgee region and South East and Tablelands
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Figure 2 The Murray—Riverina cropping area and the distribution of weather stations

(green dots) used in this study

The purple rectangles indicate soil sites used for the APSIM simulation, which also
includes 13 soil sites outside the study area.

1.2 Objectives

Climate change has direct impacts on crop productivity, presenting challenges to food
security worldwide (Ziska et al. 2012; Wheeler & Von Braun 2013; Tai et al. 2014; Lychuk et
al. 2017). It has been estimated that climate change could decrease global wheat production
by 37-52 and 54-103 megatonnes per year in the 2050s and 2090s, respectively (Balkovi¢
et al. 2014). The Murray—Riverina region is an important NSW cropping region and it is
anticipated that future climate change will impact significantly on the performance and
profitability of farms. Understanding the regional impacts of climate change on crop yields is
an essential step towards the development of key adaptive strategies to adapt to
unavoidable climate change and mitigate the negative impacts on food security.

The downscaled 10 kilometre climate projections from the NARCIIM project (Evans et al.
2014) have become available for the 1990 to 2009 baseline period, and the 2020 to 2039
and 2060 to 2079 periods. The improvement in simulation of wheat yields with increasing
climate model resolution is largely due to an improvement in the simulation of growing
season rainfall (Macadam et al. 2014), and a further study (Macadam et al. 2016) showed
that downscaling to 10 kilometres, compared with 50 kilometres, was only beneficial when
bias-corrected data were used. However, the bias-corrected NARCIiM data has not been
applied to the agricultural sector.

In this study, we used NARCIiM simulations to drive a crop simulation model, the APSIM
(Agricultural Production Systems SIMulator) model, to assess impacts of climate change on
yields for four crops (wheat, barley, canola and lupin) and adaptation options related to
nitrogen fertiliser application and stubble management. The objectives of the study were to:

e quantify the magnitude of climate change impacts on four crops
e assess whether adaptation options can mitigate the negative impacts of climate change.

Since this study is the first to generate crop yield projections from the NARCIiM climate
projections, meeting these objectives involved developing approaches to:

e assess the uncertainties in both NARCIiM projections and the APSIM simulated outputs;
these are critical for projection of wheat cropping modelling

e handle differences between the climate model output and the observed climate
appropriately.
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1.3 Outputs
Output Details Key users
Report Crop suitability Researchers
Maps Maps of the annual and seasonal crop indices Councils, NSW Rural Fire

Service

2. Method

2.1 Source of data

Historical observed climate data

There are 370 climate observation sites with SILO PPD, which are relatively evenly
distributed in the region (Figure 2). The site-specific observed climate variables (daily
radiation, rainfall, minimum and maximum temperatures) for the 20-year 1990 to 2009
baseline period were downloaded from the SILO-patched point dataset. This period is
chosen in order to compare the observational data with NARCIiM baseline simulations.

NARCIIM simulated climate data

NARCIiM, simulations from four Coupled Model Intercomparison Project phase 3 (CMIP3)
Global Climate Models (GCMs) were used to drive three Regional Climate Models (RCMs)
to form a 12-member GCM/RCM ensemble (Evans et al. 2014). The four GCMs selected in
NARCIiM were CCCMAS3.1, CSIRO-MK3.0, ECHAMS5 and MIROCS3.2, hereafter abbreviated
to CC, CS, EC and MI, respectively. The GCM names are further followed by R1, R2 and
R3, which denote the names of the three RCMs. For the future projections the Special
Report on Emissions Scenarios (SRES) business-as-usual A2 scenario was used (IPCC
2000). The three selected RCMs are three physics scheme combinations of the Weather
Research and Forecasting model (WRF). Each simulation consists of three 20-year runs for
a baseline period (1990 to 2009) and near and far future periods (2020 to 2039 and 2060 to
2079). The four GCMs were chosen based on a number of criteria: i) adequate performance
when simulating historic climate; i) most independent; iii) cover the largest range of plausible
future precipitation and temperature changes for Australia. The three RCMs correspond to
three different physics scheme combinations of the WRF V3.3 model (Skamarock et al.
2008), which were also chosen for adequate skill and error independence, following a
comprehensive analysis of 36 different combinations of physics parameterisations over eight
significant East Coast Lows (ECLs) (Evans et al. 2012; Ji et al. 2014). For the selected three
RCMs, the WRF Double Moment 5-class (WDM5) microphysics scheme and NOAH land
surface scheme are used in all cases. Refer to Evans et al. (2014) for more details on each
physics scheme.

We acknowledge that the results are model dependent (as all model studies are) but through
the use of this carefully selected ensemble we have attempted to minimise this dependence.
By using this model selection process, we have shown that it is possible to create relatively
small ensembles that are able to reproduce the ensemble mean and variance from the large
parent ensemble (i.e. the many GCMs) as well as minimise the overall error (Evans et al.
2013a).

Some initial evaluation of NARCIiM simulations shows that they have strong skill in simulating
the precipitation and temperature of Australia, with a small cold bias and overestimation of
precipitation on the Great Dividing Range (Evans et al. 2013b; Ji et al. 2016). The differing
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responses of the different RCMs confirm the utility of considering model independence when
choosing the RCMs. The RCM response to large-scale modes of variability also agrees well
with observations (Fita et al. 2016). Through these evaluations we found that while there is a
spread in model predictions, all models perform adequately with no single model performing
the best for all variables and metrics. The use of the full ensemble provides a measure of
robustness such that any result that is common through all models in the ensemble is
considered to have higher confidence.

Soil data

There are 56 soil types registered in the APSoil database that are located in the region
(Figure 2) and these were used to run APSIM. The most frequently occurring soil textures for
the region were sandy clay and sandy loam above a clay layer, while the soil types range
from sodosols (grey) to kandosols (red).

2.2 Simulation setup

Four winter crops, wheat (Tritcum aestivum), barley (Hordeum vulgare), canola (Brassica
napus) and lupin (Lupinus angustifolious) were considered in the study.

We considered three levels of crop residue incorporation (0, 50% and 100%, denoted as
RI0, RI50 and RI100, respectively). Crop residue incorporation is a farm management that
incorporates harvested crop residue into soils by tillages. The procedure for executing crop
RI were similar to those of Liu et al. (2014) and Liu et al. (2017). Under the APSIM Manager,
we defined a variable to record the amount of crop residue at harvest time and calculated
the appropriate amount of crop residue incorporated into the top 100 millimetres of soil for
each treatment. Crop residue incorporation was executed two weeks after harvesting by disc
tillage. The actual amount of crop residue incorporated by a single tillage depends on the
amount of crop residue harvested. In this study, we implemented one additional tillage for
RI50 and two additional tillages for RI100 to reflect actual residue incorporation.

The second option for farm management in the simulation was nitrogen fertiliser application;
N-application hereafter. There were 12 levels of N-application, denoted as N1, N2, ..., N12.
The base N-application levels for wheat, barley, canola and lupin are 55, 65, 80 and 50
kilograms per hectare, respectively, which is denoted as Ngs. The amount of N applied for
each treatment was calculated as

N, = Ny [1+(1 -3)x0.4]. =1,2,3,..., 12 1)

which gives the change N-rate of —80%, —40%, 0%, +40%, +80%, +120%, +160%, +200%,
+240%, +280% and +320% over the base N-application. With the combination of all
treatments (3 RI x 12 N-application = 36 treatments), future climate datasets (12 NARCIiM x
3 time periods = 36 datasets), four crops and 370 sites, together with SILO baseline
simulations, we have a total of 1,971,360 20-year simulations.

The APSIM has been widely validated for cropping system simulations under different
environments worldwide, including this study region (Keating et al. 2003; Liu et al. 2016;
O'Leary et al. 2016; Turpin et al. 2003). The APSIM version 7.7 (Holzworth et al. 2014) was
used to evaluate the impact of climate change, crop Rl and N-applications on the four
broadacre crops for the MRC region in this study. The key APSIM modules that were used to
represent the crops (wheat, barley, canola and lupin), were soil moisture (SoilWat/SWIM3),
soil nitrogen (SoilN), surface organic matter (SurfaceOM) and crop management actions
(Manager). Detailed descriptions of SWIM3, SurfaceOM and SoilN are also available
elsewhere (Probert et al. 1998; Huth et al. 2014; Liu et al. 2014, Dietzel et al. 2015).

As large spatial variation in soil and climate including temperature, radiation and rainfall
occurred across the MRC region, we developed a suitable sowing rule. To set a sowing rule
that suited all soils and rainfall zones across the region, we considered the sowing as a
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function of soil water content, plant available water capacity (PAWC), recent rainfall and day
of year. The relationship between the recent cumulative four-day rainfall and soil water
content is illustrated in Figure 3, using different sowing days of year and PAWC. To assess
the application of nitrogen across the region and climate effect on the cropping system
without carrying over the cumulative effects, we reset the soil water and nitrogen to their
respective initial levels on 1 February of each year. Without resetting, the residual N applied
from previous years can affect crop growth for the current year and interact with climate and
farming management.
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Figure 3 The relationship between the amount of cumulative four-day rainfall (mm)

required for meeting the soil criteria and the soil water content at different days
of year (DOY)

Sowing and soil types are characterised by plant available water capacity (PAWC).

Here, we used an innovative approach to determine sowing dates based on soil water
content and cumulative rainfall. This approach allows crops to be sown in dry soils when
there is a large amount of precipitation or sown in wet soils requiring no rainfall or a small
amount of recent rainfall. In this way, the sowing rule suits a wide range of conditions for the
study area.

2.3 Bias and secondary bias correction

We defined the biases in NARCIIM climate variables as the differences between the RCM-
simulated values (Xv) and their respective observed values (Xo). Similarly, the biases in
APSIM outputs are the differences between the APSIM simulated outputs forced (i.e.
applied) by RCMs (Xm) and those forced by observed climate (Xo). We defined mean bias
error (MBE) as the differences in the mean over the 20-year period either in absolute terms
(i.e. temperature in °C, runoff in mm) or in relative terms (i.e. rainfall, %) using the formula

Xm—Xo

0]

MBE = X m — X o or MBE (%) =100x ()
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where X w is the 20-year mean of NARCIiM climate variables or the APSIM outputs forced

by NARCIiM climate, and X o is the observed climate or the APSIM outputs forced by
observations.

The bias correction applied in NARCIiM resulted in more realistic daily temperature and
rainfall than non bias-corrected outputs in many ways; however, no bias correction can fully
eliminate all biases in climate model outputs (Piani et al. 2010). Due to this and the lack of
bias-corrected solar radiation data available for the NARCIIM simulations, we assessed both
the remaining biases in the climate data and biases in APSIM outputs. We also removed the
biases in APSIM simulated outputs, such as crop yield, by a ‘secondary bias correction’
(SBC) (Yang et al. 2016). We used the method proposed by Haerter et al. (2011) that can
correct both the mean bias and biases in year-to-year variation as

_ S _
X = Xon +Lb'(x,\,I —XM,bI)
SM,bl (3)

where the subscript bl denotes the baseline and S is the standard deviation. The data before
SBC are hereafter denoted as NonSBC and after SBC as SBCMnSD.

2.4 Quality control

Input NARCIIM data have passed a series of quality assurance/quality control checks. The
APSIM model and methods used in this study have been widely used in other climate
change impact studies. The SILO data and APSIM soil database are well-established.

This report has been reviewed by internal and external reviewers and followed the
procedures set out in DPIE’s Scientific Rigour Position Statement (OEH 2013). Two scientific
papers have been published in academic journals: ‘Propagation of biases in regional climate
model simulations to biophysical modelling can complicate assessments of climate change
impact in agricultural systems’ has been published in the International Journal of Climatology
(Liu et al. 2019) and ‘Modelling and evaluating the impacts of climate change on three major
crops in south-eastern Australia using regional climate model simulations’ has been
published in Theoretical and Applied Climatology (Wang et al. 2019).

Meetings were organised with external experts to evaluate the methodology and review the
results of this study. The first meeting was held on 14 August 2017 at the University of New
South Wales (UNSW) to elicit expert feedback on methodology and initial results. Project
leader (Dr De Li Liu) introduced the method and presented the initial results to Professor
Jason Evans (UNSW), Dr Nicholas Herold (UNSW), Dr Kathleen Beyer (NSW DPIE), Dr Fei
Ji (NSW DPIE) and Dr lan Macadam (NSW DPIE), who represent a broad range of expertise
in regional climate modelling and its usage in assessing climate change impacts.

The second meeting was held on 12 December 2017 at UNSW to elicit further expert
feedback on results. Project leader (Dr De Li Liu) presented the results of the analysis to
Professor Jason Evans (UNSW), Anthony Coward (NSW DPIE), Dr Kathleen Beyer (NSW
DPIE), Dr Cathy Waters (NSW DPI), Dr Fei Ji (NSW DPIE) and Dr lan Macadam (NSW
DPIE), who represent a broad range of expertise in regional climate modelling and climate
change impacts.

2.5 Data storage and access

All output data were converted to raster format (ArcGIS ESRI grid) and supplied to the
MCAS-S (Multi-Criteria Analysis Shell for Spatial Decision Support) datapacks for
distribution and storage. All input data to the model and by-products are stored on hard disk
drives. All data are in the NARCIiM coordinate system. The extent of the datasets includes
the MM region, ACT and SET with the boundary at top: —32.671254, left: 143.317445, right:
150.745676, and bottom: —37.505077.
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3. Results

The observed and NARCIIM simulated climate variables for the crop-growing season (from
sowing to harvesting) are analysed for the baseline period (1990 to 2009), and a near future
and far future period (2020 to 2039 and 2060 to 2079 respectively). The climate variables
include radiation, rainfall, maximum and minimum temperature, which are required as input
to APSIM. The biases for NARCIiM simulated climate variables are expressed as mean bias
errors (MBE) shown in box plots. Here, the biases were calculated for three stages of crop
growth: pre-sowing (PS) from 1 February to sowing; sowing to flowering (STF); flowering to
harvesting (FTH), as well as for the whole year. The PS is included in this analysis as our
sowing rule is based on soil water at the sowing time.

To simplify the presentations, four treatments that include two contrasting residue
incorporations (0% and 100%) and two N-applications (55 kg ha* and 165 kg ha') were
selected to illustrate the biases in soil water balance, crop phenology and crop yield. As
biases were similar for each crop, we report bias results for a wheat cropping system only.

With the substantial biases in NARCIiM simulated variables and the subsequent biases in
APSIM outputs, biases in crop yield were removed prior to the impact assessment. This was
followed by secondary bias correction and impact assessments for the four crops.

3.1 NARCIiM simulated climate for cropping growing
season for the baseline period

NARCIiM simulated climate variables (radiation, rainfall, maximum temperature and
minimum temperature) for the cropping growing season (CGS) were extracted and 20-year
mean values for the baseline period were also calculated, which were compared with
observations (SILO) for the same time period.

The spatial distributions of simulated radiation for the 12 NARCIiM ensemble members and
SILO are shown in Figure 4. All simulations overestimated radiation for CGS when
compared with SILO, especially for the four R3 simulations. Over the region, the averaged
difference between both R1 and R2 simulations and SILO observations ranged from +1.3 to
+2.1 megajoules per square metre per day, and the difference between R3 simulations and
observations ranged from +2.7 to +3.9 megajoules per square metre per day. However, the
spatial distributions of observed SILO radiation were captured well by R1 and R2
simulations, i.e. higher values in the western region and lower values in the eastern region.

The patterns of bias-corrected RCM simulated CGS rainfall matched well with observations
for all simulations (Figure 5); however, the three CC-driven simulations slightly
overestimated observed rainfall, while other simulations produced much smaller amounts of
CGS rainfall across the region.

The patterns of observed maximum and minimum temperatures for CGS are also well
captured by all simulations (Figure 6 and Figure 7). The CC-forced and CS-forced
simulations only overestimated maximum temperature by between 0.1 and 0.3°C, while the
EC-forced and MI-forced simulations overestimated maximum temperature from 0.3 to
0.6°C. In contrast, most simulations underestimated minimum temperature for CGS except
for the MI-R3 simulation, which slightly overestimated minimum temperature by about 0.1°C.
The magnitude of overall overestimations in maximum temperature was approximately the
same as overall underestimations in minimum temperature (Figure 6 and Figure 7).

The biases in climate variables are expected to affect the simulated results of crop models.
In a semi-arid environment such as the Murray—Riverina cropping region, rainfall biases can
significantly affect crop growth and crop yield.
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Figure 4 Comparison of the 12 NARCIiM RCMs simulated mean daily CGS radiation
(MJ/m?) (A-L), with SILO data (M), across the Murray—Riverina cropping region,
for the 1990 to 2009 baseline period
Here and in the following three figures, the four GCMs: CCCMA3.1, CSIRO-Mk3.0,
ECHAMS5 and MIROC3.2, are abbreviated to CC, CS, EC and MI, respectively,
followed by R1, R2 and R3, which denote the RCMs.
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Figure 5 Comparison of the 12 NARCIiM RCMs simulated total CGS rainfall (mm) (A-L),
with SILO data (M), across the Murray—Riverina cropping region, for the 1990 to
2009 baseline period
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Figure 6 Comparison of the 12 NARCIiM RCMs simulated mean CGS maximum
temperature (°C) (A—L), with SILO data (M), across the Murray—Riverina
cropping region, for the 1990 to 2009 baseline period
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Figure 7 Comparison of the 12 NARCIiM RCMs simulated mean CGS minimum
temperature (°C) (A—L), with SILO data (M), across the Murray—Riverina
cropping region, for the 1990 to 2009 baseline period

11



Climate change impacts in the NSW and ACT Alpine region: Impacts on crop suitability

3.2 Future climate projections

We used box plots to summarise the changes across the 12 RCM combinations. Figure 8
shows the distribution of changes in mean radiation, maximum, minimum and mean
temperature, and rainfall, for the growing season and non-growing season for each
simulation over 370 sites in 2020 to 2039 and 2060 to 2079. Changes are relative to the
1990 to 2009 baseline period. In the text, 1990 to 2009, 2020 to 2039 and 2060 to 2079 are
abbreviated to 2000s, 2030s and 2070s respectively. Changes in intra-seasonal variance
(intra-SD) for the climate variables are also calculated.

Small changes in seasonal radiation are projected for the near and far future periods for
each simulation (Figure 8A); for example, the ensemble means for projected change in
growing season radiation were —0.13% in the 2030s and +0.22% in the 2070s relative to the
2000s over the region. Similarly, non-growing season radiation was projected to decrease
(—0.53%) in 2020 to 2039 and —0.51% in 2060 to 2079 (Figure 8A)

For the two future time periods, a strong seasonal warming trend was observed for all RCM
simulations (Figure 8B); in particular, maximum temperature for the growing season was
projected to moderately increase (+0.5°C and +1.7°C) across all 12 simulations in 2020 to
2039 and 2060 to 2079, respectively. Increases in maximum temperature for the non-
growing season are projected to increase +0.7°C and +2.2°C for 2030s and 2070s,
respectively (Figure 8B). A similar warming trend was found in minimum temperature with a
larger increase from December to March (Figure 8C).

Overall, the changes in mean temperature were similar to those for the minimum and
maximum temperature (Figure 8D). Decreasing growing season rainfall was observed for
some of the 12 simulations (e.g. CS-R1, CS-R2, and CS-R3) (Figure 8E) and, on average
across all simulations, growing seasonal rainfall was projected to decrease (—3.8% and
—2.4% for 2020 to 2039 and 2060 to 2079 respectively). It may be worthwhile to note that the
increased rainfall occurred in the non-growing season (+5.8% and +13% for 2030s and
2070s, respectively). While this may have no immediate benefit to crop yields, this rainfall
may provide useful levels of soil moisture to aid crop establishment.

The variance of future growing season radiation changed little, relative to the 1990 to 2009
baseline period (Figure 8F); however, the change in the variance of non-growing season
radiation varied greatly among RCMs for both future time periods. Almost all RCMs
projected increased intra-seasonal variances of temperature (Figure 8G, H and ). In
contrast, there was a large difference in change of intra-seasonal rainfall variability for the
RCMs (Figure 8J).
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Figure 8 Projected changes in mean radiation (%), maximum, minimum and mean
temperature (°C), and rainfall (%) in the growing season (green = April through
November (A-N)) and non-growing season (red = December through March (D-
M)) (A-E), and intra-seasonal standard deviations (intra-SD) of same (F-J)
Box plots show the distribution of mean changes and intra-SD in the period 2020 to
2039 and 2060 to 2079 relative to 1990 to 2009 for each of the 12 RCMs across the
MRC region. Box plots show the 10, 25, 50, 75, and 90 percentiles, calculated from
the 370 sites.
3.3 Biases for NARCIiM simulated climate variables

Biases in climate variables for each of the 12 RCM simulations were calculated by
comparing NARCIIM simulated climate with SILO observed climate for the 1990 to 2009
baseline period. Figure 9 shows the mean bias error (MBE) for the climate variables
(radiation, minimum, maximum and mean temperature, rainfall) and their intra-SD, as well as
rainfall probability and rain intensity. As intra-SD measures the variability of daily sequences,
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a negative or positive intra-SD bias means the daily sequence of RCMs exhibits a larger or
smaller daily variation than observed daily sequences, respectively.

It is important to quantify intra-SD because crop development and growth are sensitive to
range of diurnal temperature variation, which is quantified by daily minimum and maximum
temperature, and also because rainfall distribution in the season can greatly affect crop
growth. As a crop has different sensitivities to bias in different crop stages, we calculated the
bias for annual and three cropping periods: pre-sowing (PS) from 1 February to sowing,
sowing to flowering (STF), and flowering to harvesting (FTH).

Small annual biases in both magnitude and the variations over the 370 sites were found
across all RCMs for all variables, except for both mean and intra-SD of radiation

(Figure 9A&B). This largely reflects large biases in radiation that are due to no observed
radiation for bias correction of simulated radiation. In addition, the annual biases in intra-SD
of rainfall and rain intensity were also quite large, with significantly lower values when
compared to observations for all RCMs (Figure 9K and 9L).

In the three cropping periods (PS, STF and FTH), almost all RCM simulations overestimated
radiation (Figure 9A). Radiation MBE exhibited an increased trend of MBEs from PS to FTH.
Biases for R3 simulations were larger than those for R1 and R2 simulations; however, the
intra-SD of bias in radiation for the STF period had negative MBEs, largely positive

(Figure 9G) before flowering (PS & STF), indicating that the daily sequences of the NARCIiM
simulated radiation didn’t match the SILO-radiations. It is worth noting that NARCIiM
simulated radiation was not bias-corrected, but a large proportion of radiation in SILO was
calculated (i.e. not actual observed).

Unlike the consistent biases in radiation, the temperature MBE varied considerably between
RCMs and growing periods (Figure 9B-D). The most distinct feature was that the bias had a
reciprocal low—high pattern between periods, i.e. one higher companied with another lower,
suggesting some different biases in different seasons. For example, downscaling of some
GCMs (CC-, CS- and EC) produced higher minimum temperature (Tmin) in the PS period, but
lower in another two phenological stages (STF and FTH) (Figure 9C).

In comparison between climate variables, RCMs gave a higher maximum temperature (Tmax)
in one period and often showed a lower Tnmin for the same period. For example, CC-R1 had a
median MBE of +0.7°C for Tmax in the period of FTH (Figure 9B), but —0.5°C for Tmin in that
period (Figure 9C). However, the magnitude of MBEs was not the same for Tmin and Tmax; the
MBEs for daily mean temperature (Tmean) Were still large and maintained a similar pattern to
Tmax OF Tmin. Generally, more negative Tmean MBES for the STF period were found for CC-,
CS- and EC-forced RCMs, but more positive Tmean MBES were found for MI-forced RCMs for
this important phenological period (Figure 9D). This may lead to biases in the phenological
development as temperature is a primary factor controlling crop phenology. The intra-SD
MBEs for temperatures varied considerably, suggesting a mismatched distribution of
NARCIIM simulated daily temperature sequences with observations (Figure 9H-J).

The rainfall simulated by the CC-forced RCMs had lower bias than other RCM simulations,
showing a narrow MBE interquartile from —10% to +30% (Figure 9E). A second group of
RCM simulations forced by the CS and EC GCMs, produced significantly higher rainfall than
observed in the PS period, but lower rainfall for the crop growing periods (STF and FTH),
exhibiting a wide MBE interquartile from —40% to +50% across RCMs. The third group of
simulations forced by the Ml GCM gave over 90% of sites with positive MBEs in the PS
period and negative MBEs in the STF period. Generally, a similar seasonal bias pattern, i.e.
a positive MBE in one period companied with a negative in another period, was found in
rainfall bias, suggesting imperfect matching between seasonal bias-corrected NARCIIiM
rainfall and observation. The intra-SD MBE for rainfall in the growing season was mostly
negative, suggesting smaller variations in daily rainfall than observations (Figure 9K).
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In the semi-arid environment of our study area, rainfall characters such as the frequency of
rainfall events and rain intensity are important because they can alter rainfall water
partitioning in soil water balance and availability of moisture for crop growth. Thus, in
addition to analysis of rainfall MBE, we further explored the rain-event characters. Figure 9F
and 9L exhibit an obvious contrasting pattern between rainfall probability and rainfall
intensity, demonstrating that RCMs tended to produce a higher rainfall probability

(Figure 9F) and lower rainfall intensity than observations (Figure 9L). This indicates that all
RCMs simulated more frequent but less intensive rainfall when compared with SILO data.
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Figure 9 Mean bias error (MBE) in NARCIiM simulated climate variables radiation (%),

maximum, minimum & mean temperature (°C), and rainfall (%) (A-E), and their
intra-SD (G—K), along with MBEs in rain probability (%) (F) and rain intensity (%)
(L), for PS (red, a), STF (light green, b), FTH (dark blue, ¢) and annual (cyan, d)

Box plots show the 10, 25, 50, 75 and 90 percentiles, calculated from the 370 sites.
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Biases for APSIM simulations forced by NARCIiM data

It is important to understand the consequences of RCM biases for the APSIM outputs. Here
we do not assess the uncertainty of APSIM simulations, but we use the same settings of
APSIM for observed climate and RCM simulated climate. The underlying hypothesis is that if
the climate variables simulated by RCMs were realistic and perfectly matched the observed
climate, the outputs of a biophysical model forced by the observed and RCMs projected
climate should be identical. The differences in APSIM outputs between RCM simulated
climate and observed climate is considered as the biases that are derived from the
differences between the two climates. We compared the biases in a wide range of APSIM
outputs through the difference between the outputs forced by RCMs simulated climate and
observed climate (SILO).

Biases in APSIM simulated soil water balance, crop phenology and production are shown in
Figure 10. Most RCMs resulted in a positive MBE in soil water at sowing (SWS) at most
sites, due to their produced higher pre-sowing rainfall; however, biases in runoff (RO)
(Figure 10B) and deep drainage (DD) (Figure 10C) were negative at the majority of sites.
Similarly, biases in soil water evaporation (ES) were positive at all sites. In addition, across
around 75% of sites, plant transpiration (EP) biases were higher when APSIM simulation
were forced by the CC-forced RCMs and lower than observations for the remaining nine
RCM simulations (Figure 10E). These results were highly correlated with the biases in the
rainfall simulations; for example, the CC-forced RCMs that produced positive EP are the
RCMs that had positive rainfall biases, while the other three GCM-forced RCMs resulted in
negative EP MBE largely due to their negative rainfall biases. Moreover, because plant N
uptake follows water uptake, the biases in APSIM simulated N uses (NU) exhibited a similar
pattern to EP biases (Figure 10F).

Importantly, there is a clear interaction between biases in APSIM outputs and farming
management practice; for example, the crop residue incorporation (RI) considerably reduced
the range of the SWS bias (Figure 10A), deep drainage bias (Figure 10C) and plant
transpiration bias (Figure 10E) at RIO but increased the magnitude of the negative RO MBE
in R1100 (Figure 10B). Similarly, a larger bias in EP and NU were simulated at a higher N-
application than lower N-application (Figure 10E & 10F). The study reveals that farm
management practice may interact with the climate biases and consequently interact with
biophysical modelled outputs such as biomass and crop yields.

For MI-RCMs, approximately 75% of sites had a sowing date (SD) later than that resulting
from observed climate, while other GCM-based RCMs exhibited more negative SD biases
(Figure 10G). The numbers of days from sowing to flowering (DTF) and crop duration (CD)
simulated by APSIM forced by CC-, CS- and EC-RCMs were longer (positive MBE) at most
sites but those forced by Ml-based RCMs were shorter (negative MBE), relative to that
forced by observed climate (Figure 10H & 10J). It is not surprising that the differences in
crop phenological biases were consistent with the biases in NARCIIM simulated
temperature, i.e. the MI-RCMs that produced a faster development (negative positive DTF
and CD MBE) in crop development are the RCMs that had positive Tmean biases in this
phenological period (Figure 9D).

Similarly, the three CC-RCMs showed positive biomass bias in more than 75% of sites,
largely resulting from the positive rainfall MBEs; however, the positive biomass biases forced
by CC-RCMs are not large for wheat yield, due to the difference in the rainfall biases from
the positive rainfall biases in the STF period to the negative rainfall biases in the FTH period
produced by these RCMs (Figure 9E). Simplistically, the crop used CO, and water to form
photosynthetic product (biomass). The nine RCM (CS, EC & MI) forced simulations exhibited
negative biases in both wheat biomass and wheat yield in most sites, corresponding to the
pattern of the biases in rainfall and ultimately plant transpiration (Figure 10).
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Figure 10 Biases in APSIM simulated soil variables (A-E), N-uses (F) and plant variables

(G-L) under the four management treatments (a, red: 0% residue incorporation
(RI) by 50 kgN hal; b, green: 0% of RI by 165 kgN ha; c, blue: 1000% of RI by
50 kgN ha; d, cyan: 100% of RI by 165 kgN ha't)

Box plots show the 10, 25, 50, 75 and 90 percentiles, calculated from the 370 sites.

Secondary bias correction

We used a simple secondary bias correction (SBC) method to correct the biases in RCM-
driven crop yields (Yang et al. 2014). The distributions of rainfed crop yield for the 1990 to
2009 baseline period are shown in Figure 11. For all cases, using NonSBC outputs
produced a high skewness of yield distributions relative to those forced by SILO
observations when simulated wheat yield was lower than approximately 2200 kilograms per
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hectare; however, when projected yields were more than 3000 kilograms per hectare, a low
skewness of yield distribution was shown (Figure 11a&b). Similar results were found for
canola and lupin crops (Figure 11c—f). Applying the simple SBC resulted in yield distributions
largely consistent with those forced by historical observations (Figure 11b,d&f).
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Figure 11 Probability distribution functions of APSIM-simulated yields for the 1990 to

2009 baseline period, driven by historical observed climate data (black line) and
12 RCMs climate data with NonSBC (a,c,e) and SBCMnSD (b,d,f) values

SBC yield largely eliminated the distributional discrepancies against the yield driven
by observed climate.
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Impact of climate change on crops

The bias-corrected yields were to assess future climate change impacts on crop yield for the
2020 to 2039 and 2060 to 2079 projection periods. To simplify the presentation of results,
only four N-applications (N1, N3, N6 and N9) are illustrated here. The change in future
simulated crop yields varied across the sites. Overall, the ensemble mean of yield for four
crops across the MRC region (A2 emissions scenario) was projected to increase for both
future time periods compared to the reference period (Figure 12 to Figure 15). The
magnitude of increase in crop yields was larger in the far future as a result of the high carbon
dioxide (CO) concentration compensating some negative effects of climate change. Crop
responses to elevated CO-is through increase in efficiency of radiation and water use.

Figure 12 shows the mean changes in wheat yield for the 12 RCM ensemble at RI0 and
RI100 and different N-applications in the 2030s and 2070s over the study area. The results
show more significant increases in wheat yield for the 2070s in the western region than the
eastern region (Figure 12). When residue was completely removed, and nitrogen application
was at a very low level (N1), wheat yield was projected to increase by +2.6% and +10.5% in
the 2030s and 2070s, respectively (Figure 12). Such increases likely resulted from the
elevated CO, concentration that over-performed the low N-application in the current
environment; however, the change in yield increased with increasing rate of nitrogen
application in most cases, particularly when 100% residue incorporation was considered
(Figure 12). This is likely due to RI increasing soil porosity and soil water availability for crop
uses, and the interaction of high N and evaluated CO; concentration. The largest increase of
+24.9 % for wheat yield was projected in the 2070s with high amounts of N and 100% Rl
(Figure 12).

Figure 13 shows the changes in barley yield of the RCM ensemble mean at RIO and RI100
and different N-applications in the 2030s and 2070s over the study area. Similarly, results
showed more significant increases in barley yield in the 2070s in the western portion of the
area than those in east (Figure 13). There was a strong N response to the future yield
increase. When residue was completely removed, barley yield was projected to increase by
+0.8% at N1 to +8.5% at N9 in the 2030s and by +3.2% at N1 to +19.8% in the 2070s
(Figure 13). It is interesting to note the significant effect of residue incorporation and also its
interaction with N-application. With N-applications of N1, N3, N6 and N9, the difference in
barley yield change was +2.6% (from 0.8—3.4%), +3.1% (1.99-5.04%), +1.0% (4.9-5.9%)
and —2.2% (8.5-6.3%) from complete residue removal to 100% RI, respectively for the
2030s. However, in the far future higher yield changes are expected +9.7%, +15.3%, +9.6%
and +2.9% for N1, N3, N6 and N9, respectively. Again, the effectiveness of N interaction
with Rl is likely the interaction of elevated CO, concentrations.

For canola, there was strong agreement among all the treatments with respect to
pronounced projected increases in yield (Figure 14). The simulated canola yield increased
due to increased CO; concentrations in the A2 emissions scenario. N-application and Rl had
limited contributions to yield increase in each time period; for example, canola yields only
increased from +34.7% to +39.4% for the 2070s when N was increased from 16 kilograms
per hectare (N1) to 272 kilograms per hectare (N9) at 100% RI (Figure 14D & P).

In addition, it is not surprising that simulated lupin yield had no response to nitrogen increase
due to its nature of N fixation, although average yield was expected to increase by +4.6% to
+29.9% across the study area (Figure 15).
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Here and in the following three figures, 2030s and 2070s refers to the 2020 to 2039
and 2060 to 2079 periods, respectively.
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Figure 13 Impact of climate change on barley at two contrasting residue incorporations

(RIO: 0%; RI100: 100%) and for N-application (N1, N2, N6 and N9) in the 2030s

and 2070s over the Murray—Riverina cropping region
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Impact of climate change on canola at two contrasting residue incorporations

(RIO: 0%; RI100: 100%) and for N-application (N1, N2, N6 and N9) in the 2030s
and 2070s over the Murray—Riverina cropping region
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(RIO: 0%; RI100: 100%) and for N-application (N1, N2, N6 and N9) in the 2030s
and 2070s over the Murray—Riverina cropping region
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4. Discussion
4.1 Key findings

NARCIIM simulated climate

Although the bias correction (BC) of NARCIIM simulated temperature and rainfall effectively
removed bias at an annual time scale (Evans et al. 2017), it did not remove biases at finer
temporal scales such as cropping season. We show that a positive bias in one phenological
period for a given variable such as temperature or rainfall was often associated with a negative
bias in a different period. Therefore, we suggest that BC should be done at finer temporal
scales, i.e. seasonally or monthly, which could be useful for simulation of crop growth.

APSIM modelling responses to RCM biases

The biases in climate variables could explain 72—-76% of the variance in the crop yield biases
and 80-87% of the variance in the crop phenological biases. The climate biases were the
cause of biases in the biophysical modelling outputs. Figure 16 shows the trajectories of the
biases in crop yields through a schematic representation of bias source in APSIM crop vyield.
This tracks the sequence of climate biases and soil water balance biases that leads to less
water available to the crop.

The results indicate the climate biases can interact with the projected climate change, which
can result in confounding contributions to biophysical modelling outputs that increase
uncertainties about effects of climate change and farm management factors. For example,
simulated lower rainfall intensity associated with higher rainfall probability than observed
climate, can be found in the largest proportion of sites. Low intensity, frequent rainfall makes
the soil surface wetter and results in greater soil water distribution in shallow layers. This
characteristic rainfall pattern can reduce water availability for plant use because a wetter soil
surface can contribute more soil water evaporation, resulting in less water available for plant
uptake. Our results showed that the responses of the wheat cropping system to this type of
rainfall are typically positive biases in soil evaporation across almost all sites, which
consequently lead to less water available for plant transpiration and ultimately lower yield. In
addition, we found that the majority of sites had negative biases in both runoff and deep
drainage. This highlighted that rainfall characteristics were as important as the total amount
of rainfall in agricultural systems. Improved downscaling outputs are prerequisites for
realistically assessing climate change impacts in agricultural systems.

Functions of secondary bias correction

Applying a simple SBC resulted in yield distributions largely consistent with those forced by
historical observations. Importantly, the bias correction can effectively remove the
uncertainties. The simple SBC method applied on the modelled yield outputs could result in
RCM-driven crop yields being consistent with the PDF of observation-driven crop yields.
After the SBC was applied to correct some of the biases in APSIM simulated yield, the
parameters associated with the impact assessment became more meaningful, i.e. regaining
positive atmospheric CO; effect on future crop production and diminishing the false
collinearity between changes in climate variables and farm management practices.

However, SBC used in the study corrects the mean and variance under the assumption that
the APSIM responses of climate biases in the baseline period are the same as in the future
periods. As crop models are implemented with many linear and non-linear functions, the
response of crop models to climate biases may interact with the changes in environmental
conditions such as elevated future atmospheric CO,. Such possible interacting responses of
climate biases cannot be corrected by SBC. Thus, preference should be given to using
improved climate projections that can result in small biases in biophysical modelled outputs.
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25



Climate change impacts in the NSW and ACT Alpine region: Impacts on crop suitability

Impacts of climate change on major crops in the MRC region

The bias-corrected yields were used to assess future changes in crop yields for the 2030s
and 2070s. The simulated change in future crop yields varied across the study area. Overall,
the ensemble mean yield for four crops across the Murray—Riverina cropping region
corresponding to the A2 emissions scenario was projected to increase for both future time
periods compared to the reference period. The magnitude of increase in crop yields was
significant in the far future as a result of the higher CO. concentration compensating for
some negative effects of climate change, such as shortening development due to increased
temperature.

4.2 Limitations and further research

Uncertainties in the study include uncertainty of the GCMs and CO; emissions scenarios,
the dynamical downscaling procedure and the bias correction of climate data based on an
annual scale that resulted in retention of biases on a seasonal scale. Further, biophysical
models contribute to uncertainties in the assessments. Therefore, care is needed in
assessing each source of uncertainty and possible elimination of such biases is warranted.

5. Conclusion

This study provided a comprehensive assessment of biases in NARCIiM simulations at
different cropping growth stages. Substantial biases were identified in NARCIiM simulated
climate for crop growing season, largely due to the NARCIiM bias correction not accounting
for different biases in different seasons. The biases in rainfall characteristics were generally
positive in rainfall probability and negative in rainfall intensity, which resulted in APSIM
simulated negative biases for most of the study area in runoff and deep drainage and
positive biases in soil evaporation (due to wetter soil surface as a consequence of small and
frequent rains). Consequently, biases in soil water balance and water availability resulted in
less plant transpiration and less N uptake. Ultimately, those biases together with biases in
crop phenology led to biases in crop yields.

The APSIM simulated crop yields exhibited a skewed distribution towards low yield, largely
due to negative yield biases. Simple secondary bias correction (SBC) was able to produce
yield distributions largely consistent with those forced by observed climate data. Impacts of
climate change on crop yields were assessed for wheat, barley, canola and lupin and the
SBC of crop yields were considered. The ensemble mean yield for the four crops across the
MRC region corresponding to the A2 emissions scenario was projected to increase by
+2-9% and +8-20% for the 2020 to 2039 and 2060 to 2079 periods respectively, compared
to the 1990 to 2009 baseline period. A larger increase in the far future was a result of the
higher CO; concentration compensating for negative effects. Positive effects on crops at the
elevated CO concentrations can be further increased under farm management options,
particularly for cereal crops. For example, the rate of yield increased with increased N-
application and residue incorporation, which benefited from the interaction between elevated
CO- and crop higher N level, and from increased soil porosity and reduced soil water
evaporation. Therefore, these farm management options can be used as effective adaptation
options for cropping systems under future climate conditions.

The study implied that the current bias correction of NARCIIM climate data did not result in
adequate climate projections that can be used directly for assessment of climate change
impacts on agriculture. This could be improved through refinement of the correction method
to take into account different biases in different seasons of the year.
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